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Abstract. Renormalisation group ( RG) techniques are currently used to derive relevant 
quantities in the vicinity of the critical point. We present here a real space RG procedure 
which directly yields the order parameter for all values of the external parameters (e.g. 
temperature). It is as simple as a mean-field calculation, although it provides non-trivial 
results, which can be systematically improved. The method is successfully illustrated on 
the square lattice Potts ferromagnet. The whole approach suggests that the order parameter 
on a hierarchical lattice is, on every site, proportional to its coordination number. 

The renormalisation group ( RG) techniques have been initially devised for calculating 
critical exponents; the real space versions also enable the calculation of critical points 
(phase diagrams in general). However these techniques are commonly used only in 
the vicinity of the critical point, although in general there is no fundamental reason 
for such a strong restriction if approximate answers are needed. As a matter of fact, 
RG frameworks are already available [ 1,2], which enable the calculation of the free 
energy for arbitrary values of the external parameters (temperature T, applied field H, 
etc). Through appropriate derivatives of the free energy, the equation of state (as well 
as the specific heat, susceptibility, etc) can be obtained. However, these procedures 
tend to be rather complex, operationally speaking. In the present letter, we develop 
a simple real space RG formalism which enables the direct calculation (without going 
through the calculation of the free energy) of the order parameter as a function of 
temperature for arbitrary values of it. The procedure goes, as we shall see, through 
the inspection of the microscopic configurations of the system, thus developing a good 
intuition for it. Although we will be referring to the H = 0 case, the method trivially 
extends to the calculation of the complete equation of state (in principle, even as a 
function of the relevant concentrations whenever we are facing disordered systems). 

We consider a &dimensional hypercubic lattice of linear size L, and assume that 
first-neighbouring sites ferromagnetically interact, K = J /  k, T being the dimensionless 
coupling constant (we are concerned about models such as the Ising, XV,  Heisenberg, 
Potts or similar models). In the L + 00 limit, the order parameter M can be defined 
as M = N L ( K ) / L d ,  where N L ( K )  is the thermal canonical average number of sites 
whose spin is pointing in the easy magnetisation direction (say, the cri = 0 axis for the 
q-state Potts ferromagnet) minus those whose spin is pointing in any other direction 
(i.e. cri = 1,2 , .  . . , q - 1); if  the spins can be inclined with respect to the z axis (as is 
the case of the Heisenberg model, for instance), the z projections have to be considered. 
Furthermore, we associate an elementary dimensionless magneton p with each site of 
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the lattice; we could in principle choose p = 1, but will rather leave it as a variable 
since it will change under renormalisation. Following Kadanoff in order to understand 
the scaling, we divide the system of Ld sites into a system of L'd cells of linear size 
B = L / L ' >  1. We then associate with each cell the renormalised variables K '  and p i  
which will depend on K and p. The analytic dependencies will differ from one RG 

to the other, but they all have to satisfy that the total magnetic momentum (extensive 
quantity) of the system be preserved through renormalisation, i.e. 

NL,(K')p '= NL(K)p. (1) 

M ( K ' ) p ' =  M ( K ) p B d  ( 2 )  

Dividing both terms by Ld we obtain 

with M (  K')  = NL.( K ' ) /  Lfd. If we start with K and pi'' and perform n iterations in 
( 2 )  we obtain 

M ( K ' " ' ) p i " '  = B n d M (  K)p") .  (3) 

Hence 

By arbitrarily choosing p") = 1 we obtain 

M ( K ) =  lim M(K'" ' )p '" ' /Bnd 
n - m  

This formula has to be used together with the (standard) RG recurrence for the coupling 
constant, namely 

K ' = f ( K )  (6)  

which normally admits three fixed points: K = 0 (stable under renormalisation, 
paramagnetic phase), K = 00 (stable, ferromagnetic phase) and K = K, (unstable, 
critical point). Two typical situations occur when using ( 5 ) :  (i) K < K,, hence K'"' = 0 
and hence M(K'" ')  = O ,  which yields (through ( 5 ) )  M ( K )  =0,  as desired; (ii) K > K,, 
hence Kim) =CO and hence M ( K ' " ' )  = 1 (conventional value for T = 0), which yields 
(through ( 5 ) )  

M ( K ) =  n - x  lim p U ( " ) / B n d .  (7) 

This is the final formula which provides the thermal dependence of the order parameter 
in the non-trivial region, namely for T < T,.  

To finish the procedure we have to specify how the RG recursive relations for K 
(i.e. (6)) and p are determined. In particular, let us anticipate that the RG equation 
for p will typically be of the form 

PI= g ( K ) p  (8) 
with g(m) = B d  > g(K,) > g(0) > 0. From (6)-(8), it is straightforward to establish, in 
the T + T, limit, for the correlation length &K I T - T,I-" and for M - A( 1 - T /  T J P  that 

v = In B/ln[df(K)/dKIKc ( 9 )  
and 
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The critical amplitude A cannot be analytically determined (because (8) is invariant 
through the scale change p + h p  and p' + hp'  for arbitrary A )  but only numerically 
determined (by iterating). 

Several procedures are available in the literature for determining f( K ) :  here we 
shall adopt that already used in [3,4] (for the q-state Potts and spin-; Heisenberg 
models, respectively). We normalise a two-rooted graph G (with chemical distance b 
between the roots, and which might generate a hierarchical lattice with intrinsic fractal 
dimensionality [5,6] db = In Nb/ln b, where Nb is the number of bonds of the graph) 
into a smaller one G' (with chemical distance 6' between the roots, and which might 
generate a hierarchical lattice with dimensionality dbp = In Nb,/ln b', Nb. being the 
number of bonds). It follows that B = b/b '  and B d h h . =  Nb/Nb,. (See figure l ( a )  for 
an example (b '=  1, b = 2, Nb = 5, Nb' = 1, d&'= db =In 5/ln 2).) We then preserve the 
correlation function between the two roots (denoted by 1 and 2) by imposing 

where X12,,, N :  and %'12.,.N, are the dimensionless Hamiltonians corresponding, respec- 
tively, to the small (NI sites) and large (N, sites) clusters and Kb is an additive constant 
to be determined. Equation (11) completely determines f ( K ) ;  we shall note RGb,b, 
the associated RG. For the example illustrated in figure l ( a )  and assuming Potts 
interactions (X/k,T= -qK Xi, U, = 1,2, .  . . , q, V i )  we obtain [3] (through (11)) 

2t2 + 2t3 + 5(  q - 2) t4 + ( q  - 2 ) (  q - 3) t 5  

1 +2(q - l ) t 3 + ( q -  l ) t 4 + ( q -  l ) (q  - 2 ) t 5  
t '  = 

with the thermal transmissitivity t [3] defined through 

t = [ 1 - exp( - q K ) ] / [  1 + ( q  - 1) exp(-qK )]  

(and analogously for t ' ) .  
Let us now present the new procedure we have devised to determine g ( K ) .  In 

order to break the symmetry (needed for establishing the equation for the order 

62 
lb'=l) 

Figure 1. Clusters used to construct R G ~ , ~  for the square lattice. 0.0 denote, respectively, 
internal and terminal (root) sites. ( a )  R G , ~  transformation, ( b )  b = 3 graph, ( c )  b = 4 graph. 



L668 Letter to the Editor 

parameter) we impose the spin of, say, terminal 1 (of both small and large graphs) to 
be along the easy magnetisation direction (say, the U, = 0 axis), the rest of the spins 
(terminal 2 included) being free to take all possible orientations (q configurations for 
each spin). Each cluster configuration will be weighed with the corresponding 
Boltzmann factor and will be associated with a value for the cluster magnetic momentum 
m where each spin contributes proportionally to its coordination number (later on we 
shall come back into this point). We then impose 

( m ) , , =  (m>G (13) 

where (. . .) denotes the thermal canonical average; (13) dertermines g (  K ) .  The whole 
procedure is illustrated for the spin-; Ising ferromagnet (%’/ k ,  T = - K E,, up,; U, = f 1) 
in table 1. This result generalises into that for the Potts ferromagnet as follows: 

2 exp(qK’)+ (q -2) 10 exp(5qK)+ 1O(q -2) exp(3qK)+8(3q - 5 )  exp(2qK) 
exp(5qK) + 2( q - 1) exp(3qK) + 4( q - 1) exp(2qK) exp(qK’) + (q  - 1) ’’= 

2(8q2-39q+45) exp(qK)+(2q3- 16q2+44q-40) + I* 
( q - 1 ) ( 5 q - 9 ) e x p ( q K ) + ( q - l ) ( q - 2 ) ’  

where to construct the last column of a table such as table 1 we have used the fact 
that the Potts order parameter is proportional to (q(6cr,o)- l ) / (q  - 1).  

The results obtained by using (12) and (14) together with (7) ( B d  = 5 in this case), 
as well as those corresponding to higher values of b, are presented in figures 2 and 3 
and table 2. The exact critical point ( t ,  = ( 4 - k  I)-’)  is recovered for all Rb.b  (this is 
a consequence of the self-duality of the chosen clusters). The general trends are very 
satisfactory and the numerical values quite reliable (they can be further improved by 
performing extrapolations for increasing b and b‘ [7]). Note, however, that the present 
RG fail in reproducing, for q > 4, the first-order phase transition expected for d = 2 
Bravais lattices. To overcome this difficulty (shared by all available phenomenological 
and hierarchical-lattice-like RG for the pure model) the RG parameter space should be 
expanded [ 81. 

Let us now go back to the point that every spin contributes to the cluster magnetisa- 
tion, proportionally to its coordination number. This hypothesis follows from our 
belief that the order parameter on a hierarchical lattice is not uniform (the same on 
all sites) as in Bravais lattices, but rather is directly related to the number of neighbour- 
ing sites with which a given site is interacting. The well known uniform spontaneous 
magnetisation of Bravais lattices should be a consequence of their translational invari- 
ance (lost in hierarchical lattices). The hypothesis we are discussing is equivalent to 
assuming that the relevant magnetic field (a  parameter thermodynamically conjugated 
to the order parameter) is also proportional to the coordination number: this is precisely 
what several authors [2,5,10] have assumed in similar contexts. On different but related 
grounds, the analysis of the Blume-Emery-Griffiths ( B E G )  model points towards the 
same direction. The BEG model in a Bravais lattice contains the q = 3 Potts model as 
a particular case if convenient relations are assumed between the BEG coupling 
constants. The same occurs in a hierarchical lattice if and only if the single-site term 
of the BEG Hamiltonian is assumed proportional to the coordination number. Last, 
but not least, if we assume in the present RG framework a uniform order parameter, 
the successive approximations (increasing b and b’) for p run away from the exact 
answer! Naturally, the full calculation of the Gibbs energy of a specific hierarchical 
lattice as a function of T and H would unambiguously clarify the situation. Such a 
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Table 1 .  Establishment of (13) associated with R G , ~  for the Ising ferromagnet (9 = 2) .  ( a )  
( m ) , . = 2 e K ' p ' / ( e K  + e - K ) .  ( b ) ( m ) , = ( 1 0 e S K + 8 e - K  -2e-")@/(e" + 2 e K  + 4 e - ' +  
e-" ). These expressions can be recovered as the particular 9 = 2 case of (14) .  

( Q )  

G' configuration Weight m 

+ '1 0 

( b )  
G configuration Weight m 

treatment would also tell us to what extent the present RG procedure provides the 
exact M ( T )  for that hierarchical lattice. In any case we can already note that the 
q = 2 R G , ~  result for P is 

I n (  5(17+12\ /2) )  2 ( 3 8 + 2 7 f i )  [ I n (  18+13\ /2) ] - '  l 0 + 7 f i  = 0.18 

which coincides with the value presented by Melrose [SI as being the exact one for 
the associated (Wheatstone bridge) hierarchical lattice. For this lattice and arbitrary 
values of q we obtain 

P =  (15)  
ln{5(2+J;f)[8(1+ q ) +  ( 1 5 +  q)J;fl/2(1+J;f)[40+ 18q + ( 5 2 +  q)J;f]) 

ln[(8 + 5 q  + 1 3 f i ) / ( 8  + q + 7 4 1 1  
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Figure 2. Thermal behaviour of the order parameter for the q-state Potts model. ( a )  R G , ~  

for typical values of 9, ( 6 )  successive RG approximations for 9 = 2 (Ising). 
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Figure 3. ( U )  Critical exponent f l  and (6) amplitude A as functions of 9 within successive 
RG approximations (j3 fora  square lattice is taken from [9]). The broken lines are indicative 
and have been used when the calculation was available only for integer values of q. 

Also it is worth mentioning that, for all the self-dual hierarchical lattices considered 
in this letter, we have verified that, in the 4 + limit, Y + l /db (see [ 6 ] )  and p + 1 - l /db. 

To summarise, let us say that the real space RG procedure we have introduced here 
enables in principle the calculation, for all temperatures (and similar external 
parameters), of the order parameter(s) associated with any Hamiltonian system. The 
calculation is direct (no calculation of thermodynamical energy is needed), helps 
intuition (in the sense that microscopic configurations have to be visualised), is as 
simple operationally as a mean-field approach and provides non-trivial results which 
can be systematically improved. Its degree of efficiency has been satisfactorily tested 
here with the square lattice Potts ferromagnet, whose exact thermal dependence on 
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Table 2. Successive RG approximate and exact values for critical exponents and amplitudes. 
A few numerical values are missing because their calculation would have needed a 
supplementary non-trivial computational effort. 

RG12 RG13 RGI4 RG23 RG24 RGj4 Exact 

U q = l  
q = 2  
q = 3  
q = 4  

P q = l  
q = 2  
q = 3  
q = 4  

q = 2  
q = 3  
q = 4  

A q = l  

1.428 
1.149 
1.024 
0.948 
0.161 
0.180 
0.193 
0.204 
1.225 
1.275 
1.310 
1.338 

1.380 
1.109 
0.988 
0.916 
0.154 
0.166 
0.175 
0.182 
1.210 
1.253 
1.284 
1.309 

1.363 
1.095 
0.975 
0.903 

0.159 
0.165 
0.170 

1.235 
1.271 

- 

1.305 
1.048 
0.933 
0.864 
0.144 
0.145 
0.147 
0.148 
1.182 
1.206 
1.225 
1.240 

1.303 
1.046 
0.93 1 
0.862 

0.139 
0.139 
0.139 

- 

1.196 
1.215 

1.301 
1.043 
0.928 
0.859 

0.131 
0.129 
0.127 

- 

1.171 
1.177 

$ = 1.333 . . . 
1 
2 = 0.833 . . . 
3 = 0.666. . . 
& = 0.139 . . 
= 0.125 

b-0 . l l l  . . . 
j$ = 0.083 . . 

1.222 
? 
? 

the magnetisation is still unknown for all q # 2; further applications would be very 
welcome. 

During the early stages of this work we benefitted from very fruitful discussions with 
A Coniglio; useful remarks from H J Herrmann are also acknowledged. Finally, one 
of us (CT) acknowledges the hospitality received, at a particular stage of the present 
work, from the Departmento de Fisica of the Universidade Federal do Rio Grande 
do Norte-Brazil. 
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